Chapter 15 Solutions
Contributed by Anna Fairbain 2016
15.1a.
\[\begin{align*} P & = 150 - Q\\ \pi & = (150 - Q)Q - 0\\ \pi & = 150Q - Q^2\\ \frac{\partial\pi}{\partial Q} & = 150 - 2Q\\ 0 & = 150 - 2Q\\ \end{align*}\]
Solving for Q we get the solutions:
\[\begin{align*} Q^* & = 75\\ P^* & = 150 - 75\\ P^*& = \$75\\ \pi & = 75*75 - 0\\ \pi & = \$5,625\\ \end{align*}\]Solve the system of best response equations 1 and 2. Multiply equation 2 by -2 and add to equation 1.
\[\begin{align*} 0 & = -150 + 3q_2\\ q_2* & = 50\\ q_1* & = 50\\ Q^* & = 100\\ P^* & = \$50\\ \pi_i & = \$2,500\\ \end{align*}\]In Bertrand Nash equilibrium, P = MC, which is zero in this case:
\[\begin{align*} P & = 0 \rightarrow Q = 150\\ q_1 & = q_2 = \frac{Q}{2} = 75\\ \pi_1 & = \pi_2 = 0\\ \end{align*}\]15.2
a.
Monopolist
\[\begin{align*} \pi & = (a - bQ)Q - C*Q\\ \pi & = aQ - bQ^2 - CQ\\ \frac{\partial\pi}{\partial Q} & = a - 2bQ - c \\ 0 & = a - 2bQ - c\\ \end{align*}\] \[\begin{align*} Q^* & = \frac{a - c}{2b}\\ P & = a - b(\frac{a - c}{2b})\\ P & = a - \frac{(a - c)}{2}\\ P^* & = \frac{a}{2} + \frac{c}{2}\\ \pi & = (\frac{a + c}{2})(\frac{a - c}{2b}) - c(\frac{a - c}{2b})\\ \end{align*}\]Nash equilibrium is:
\[\begin{align*} p_1 & = p_2 = C\\ C & = a - bQ\\ Q & = \frac{a - c}{b}\\ \end{align*}\]And firms split output, so:
\[\begin{align*} q_1 & = q_2 = \frac{a -c}{2b}\\ \pi_1 & = 0 \\ \pi_2 & = 0 \\ \pi & = 0 \\ \end{align*}\]Solving for \(q^*_i\):
\[\begin{align*} q_i^* & = \frac{a - c}{b(n + 1)}\\ Q & = (\frac{n}{n + 1})(\frac{a - c}{b})\\ Q^* & = a - \frac{n}{n + 1}(a - c)\\ \end{align*}\] \[\begin{align*} Firm \pi & = \Big[a - (\frac{n}{n+1})(a - c)\Big]\frac{(a - c)}{b(n + 1)} - \frac{c(a - c)}{b(n + 1)}\\ Industry \pi & = n\Bigg[\bigg(a - (\frac{n}{n+1})(a - c)]\bigg)\frac{(a - c}{b(n + 1)} - \frac{c(a - c)}{b(n + 1)}\Bigg]\\ \end{align*}\]Set \(n=1\)
\[\begin{align*} P & = a - \frac{1}{2}(a - c)\\ P^* & = \frac{a - c}{2}\\ q^* & = \frac{1}{2}(\frac{a - c}{b})\\ \end{align*}\]Set \(n=2\)
\[\begin{align*} P & = a - \frac{2}{3}(a - c)\\ P^* & = \frac{a - 2c}{3}\\ q^* & = \frac{a - c}{3b}\\ \end{align*}\]Set \(n=\infty\)
\[\begin{align*} P & = a - 1(a - c)\\ P^* & = c\\ Q & = (\frac{n}{n+1})(\frac{a - c}{b})\\ Q^* & = 1(\frac{a - c}{b})\\ \end{align*}\]Notice that when you set \(n = \infty\), the result gets you perfect competition.
Even more remarkable, only 2 firms gets you to competitive outcome in the Bertrand model.