Chapter 11 Solutions
Contributed by Luke Gasparich and Steve Burak 2017
11.1)** (a) Maximum Profit:
\(\pi(q) = 20q - .1q^2 - 10q - 50\) \(\pi'(q) = 20 - .2q - 10 = 0\) \(.2q = 10\) \(q = 50\)
(b) Maximum Daily Profit:
\(\pi(50) = 20(50) - .1(50)^2 - 10(50) - 50 = 200\)
(c) Graph the Results:
\(S = MC = .2q + 10\)

Figure 1
11.2) A lump sum tax on profits would look like this: \(\pi(q) = pq - c(q) - t\) FOC: \(p - c'(q) = 0\) The same as FOC without tax.
A proportional tax on profits would look like this: \(\pi(q) = (1-t)[pq - c(q)]\) because the firm has to pay \(t*\pi(q)\) in taxes. FOC: \((1-t)(p-c'(q)) = 0\) \(=>\) \(p - c'(q) = 0\) (Divide through by (1-t)) Same as above, so proportional tax on profit has no affect on output decisions.
Per unit output: \(\pi(q) = pq - c(q) - tq\) FOC: \(p - c'(q) - t = 0\), this one is different so per unit tax affects output choice.
11.4)
\[\pi (q)=\Big[-\frac{1}{2}q_A +50\Big]q_A +\Big[-\frac{1}{4}q_L+25\Big]q_L -0.25(q_A +q_L)^2\] \(A:\) \((1):\) \(-q_A+50-0.5(q_A+q_L)=0\) \((2):\)\(-\frac{1}{2}q_L+25-0.5(q_A+q_L)=0\)
from \((1)\) \[-\frac{3}{2}q_A-\frac{1}{2}q_L+50=0\] \[-3q_A+100=q_L\] plug into \((2)\) \(=>-q_L-\frac{1}{2}q_A+25=0\) \[-(-3q_A+100)-\frac{1}{2}q_A+25=0\] \[\frac{5}{2}q_A=75\] \[q_A=\frac{150}{5}\] \[q_A=30\] \[q_L=-3(30)+100)=10\] \[P_A=-\frac{1}{2}*30+50=$35\] \[P_L=-\frac{1}{4}(10)+25=$22.50\]
\(11.6) a)\) \[ E[ \pi (q)] = 0.5[30q - 0.5q^2 -5q-100] + 0.5[20q - 0.5q^2 - 5q -100]\] \[=15q- \frac{1}{4}q^2- \frac{5}{2}q-50+10q- \frac{1}{4}q^2 - \frac{5}{2}q -50\] \[=- \frac{1}{2}q^2 +20q -100\] \[ \frac{dE( \pi (q))}{dq} = -q+20=0\] \[ q=20\] \(c)\) \[EU[ \pi (q)]=0.5\sqrt{30q-\frac{1}{2}q^2 -5q-100} +0.5\sqrt{20q-\frac{1}{2}q^2-5q-100}\] \[\frac{dEU[\pi (q)]}{dq}=\Big(30q-\frac{1}{2}q^2-5q-100\Big)^\frac{-1}{2}(30-q-5)+\Big(20q-\frac{1}{2}q^2-5q-100\Big)^\frac{-1}{2}(20-q-5)=0\] \[\frac{25-q}{\sqrt{25q-\frac{1}{2}q^2-100}}+\frac{15-q}{\sqrt{15q-\frac{1}{2}q^2-100}}=0\] Solve this equation for higher \(EU\) then if \(q=20\) from part \((a)\) \(q=16.95\) maximizes \(EU\)
\(b)\) \[EU(\pi (20))=0.5\sqrt{30*20-\frac{1}{2}(20)^2-5*20-100}+0.5\sqrt{20*20-\frac{1}{2}(20)^2-5*20-100}\] \[=0.5\sqrt{600-200-100-100}+0.5\sqrt{400-200-100-100}\] \[=0.5\sqrt{200}+0.5\sqrt{0}\] \[=0.5*10\sqrt{2}\] \[=5\sqrt{2}\] \[=7.07\] \(d)\) If they know with certainty that \(p=30\): \[E(\pi (q))=\pi(q|p=30)\] \[=30q-\frac{1}{2}q^2-5q-100\] \[\pi '(q)=30-q-5=0\] \[q=25\] If they know \(p=20\) \[\pi (q)=20q-\frac{1}{2}q^2-5q-100\] \[\pi '(q)=20-q-5=0\] \[q=15\]